

Eye in the Sky: An Automated UAV System for Wildlife Tracking

Gabriel Vega

Michael Shafer, PhD Carol Chambers, PhD

October 08, 2018 The Wildlife Society Conference 2018 Cleveland, OH

- Current Issues with Wildlife Tracking
 - Addressing inefficiencies and risk
- Field UAV Design
 - Packable (protected when stored)
 - Simple fabrication and field repairable
- Radio Telemetry Development
 - UAV radio relay (400 ft pole for antenna)
 - Environment mapping, DOA, and estimated tag localization
- Technology Dissemination
 - Website development
 - System design (plans, tutorials)
 - Open source software and firmware
- Future Work
 - Automated localization/path planning implementation
 - Synthesis of data analysis (easy field use)

- Current Issues with Wildlife Tracking
 - Addressing inefficiencies and risk
- Field UAV Design
 - Packable (protected when stored)
 - Simple fabrication and field repairable
- Radio Telemetry Development
 - UAV radio relay (400 ft pole for antenna)
 - Environment mapping, DOA, and estimated tag localization
- Technology Dissemination
 - Website development
 - System design (plans, tutorials)
 - Open source software and firmware
- Future Work
 - Automated localization/path planning implementation
 - Synthesis of data analysis (easy field use)

Current Issues

- Current search methods are inefficient
 - Limited access to rough terrain
 - Dangerous and costly manned aircraft searches
 - Timely cross-country hiking
- GPS tags present additional cost and weight

UAV-Radio Telemetry Research Program

- Collaboration: biologists, electrical & mechanical engineers
- Final system will integrate autonomous flight capability with onboard data processing
- Improved mobility and vantage point

- Current Issues with Wildlife Tracking
 - Addressing inefficiencies and risk
- Field UAV Design
 - Packable (protected when stored)
 - Simple fabrication and field repairable
- Radio Telemetry Development
 - UAV radio relay (400 ft pole for antenna)
 - Environment mapping, DOA, and estimated tag localization
- Technology Dissemination
 - Website development
 - System design (plans, tutorials)
 - Open source software and firmware
- Future Work
 - Automated localization/path planning implementation
 - Synthesis of data analysis (easy field use)

- Current Issues with Wildlife Tracking
 - Addressing inefficiencies and risk
- Field UAV Design
 - Packable (protected when stored)
 - Simple fabrication and field repairable
- Radio Telemetry Development
 - UAV radio relay (400 ft pole for antenna)
 - Environment mapping, DOA, and estimated tag localization
- Technology Dissemination
 - Website development
 - System design (plans, tutorials)
 - Open source software and firmware
- Future Work
 - Automated localization/path planning implementation
 - Synthesis of data analysis (easy field use)

System Overview

GNU Radio Flowgraph

- GNU radio software used with Airspy (SDR front end)
- Software used to input and store incoming signal from beacon

Current Test Design

Ground Station

Lake Mormon Testing Site

Flight video – Search Method

DOA Estimation

Data processing stages:

Range Test (Characterizing System)

- Received signal stronger with horizontal tag orientation
- System detects pulses without issue up to 1km
 - Detection algorithm still being optimized
 - Able to hear and see pules intermittently at 1.5 km \approx 0.93 miles
- Detected pulse strength depends on alt, distance, and beacon antenna orientation.

NORTHERN

Localization Results

		Bearing Error			Localization Error						
Tiral Descrip.	Dist. (m)	Alt. (m)	Waypoints	Median	Std. Dev.	CM (m)	MLE (m)	MLM-Ɓ (m)	RMR (m)	M-est (m)	Avg. (m)
UAV: 1/2-Circ	500	75	12	9.3°	43.8°	94	226	128	107	181	147
						19%	45%	26%	21%	36%	29%
UAV: Circ	100	15	12	6.7°	5.2°	6	12	8	14	12	11
		15				6%	12%	8%	14%	12%	11%

Human vs Drone Results

		Bearing Error			Localization Error						
Tiral Descrip.	Dist. (m)	Alt. (m)	Waypoints	Median	Std. Dev.	CM (m)	MLE (m)	MLM-Ɓ (m)	RMR (m)	M-est (m)	Avg. (m)
UAV: Line	500	122	6	2.3°	2.9°	34 6%	32 6%	22 4%	19 4%	31 6%	28 5%
UAV: Line	500	61	6	2.4°	2.9°	32 6%	35 7%	25 5%	11 2%	35 7%	28 5%
Humman: Line	500	2	6	5.1°	6.3°	N/A	71 13%	52 10%	80 15%	74 14%	69 13%

- Current Issues with Wildlife Tracking
 - Addressing inefficiencies and risk
- Field UAV Design
 - Packable (protected when stored)
 - Simple fabrication and field repairable
- Radio Telemetry Development
 - UAV radio relay (400 ft pole for antenna)
 - Environment mapping, DOA, and estimated tag localization
- Technology Dissemination
 - Website development
 - System design (plans, tutorials)
 - Open source software and firmware
- Future Work
 - Automated localization/path planning implementation
 - Synthesis of data analysis (easy field use)

Website Overview

- Website developed to provide overview of system and detailed design and software dissemination
- Provides summary of project goals and is being optimized to create • an open source environment so users can create and modify their own system

https://www2.nau.edu/uavrt-p/

Website Overview

Website Overview

- Current Issues with Wildlife Tracking
 - Addressing inefficiencies and risk
- Field UAV Design
 - Packable (protected when stored)
 - Simple fabrication and field repairable
- Radio Telemetry Development
 - UAV radio relay (400 ft pole for antenna)
 - Environment mapping, DOA, and estimated tag localization
- Technology Dissemination
 - Website development
 - System design (plans, tutorials)
 - Open source software and firmware
- Future Work
 - Automated localization/path planning implementation
 - Synthesis of data analysis (easy field use)

- Currently testing automated localization techniques
- System capable of localizing beacons during flight
 - Vehicle moves in response to initial estimate seeking to improve localization estimate
- Successfully simulated system
 - Currently addressing issues with live drone tests

Field Use Ready

- Synthesizing real-time DOA estimation and post processing visualization
- Designing easy to use software and interfaces that can be used as an additional tool in the field
- Creating a closed loop system

Field Use Ready

ø S Google Earth Pro - X File Edit View Tools Add Help 🔲 🛠 🖉 🥶 🚳 🛎 👰 📗 🖂 🖺 🖼 ▼ Search Sign in Search ex: 37 25.818' N, 122 05.36' W Get Directions History ▼ Places E My Places IE 🗹 🗀 Sightseeing Tour Make sure 3D Buildings layer is checked E C S Temporary Places E D beacon_points E Deacon_points E S Mormon Lake, AZ, 1:24,000 guad, 1965, USGS Anton Lake U.S. Geological Survey Historical Topographic Map Collection, scale 1:24,000. 🗆 🥪 Мар Q 🔳 [* * 🗅 ▼ Layers 🖻 🗹 🤗 Primary Database E Z Announcements . Borders and Labels Places 🖲 🗹 🖿 Photos Roads 🖲 🖾 🌣 Weather Gallery
Gallery
Global Awareness • DD More I Terrain Google Earth Imagery Date: 6/12/2017 34°54'34.04" N 111°26'06.68" W elev /130 ft __eye alt 13780 ft 🔘 ፈ^ቢ 👯 🌮 📑 🖯 ষ 📢 🔊 🗿 💻 📼 🖟 ባዛ) 5:18 PM 10/6/2018 O Type here to search 👩 Home | UAV-RT - G... Google Earth Pro \Box 1 1 D -Camtasia Studio - ... Paused...

Acknowledgments

- This work was supported by NSF Award 1556417
- **Collaborators:**
 - Michael Shafer, PhD
 - Paul Flikkema, PhD
 - Carol Chambers, PhD
- **Student Researchers:**
 - Gabriel Vega
 - Kellan Rothfus
- **Past Researchers:**
 - Amir Torabi
 - Matthew Robertson
 - Michael Finley

NORTHERN

QUESTIONS?

Center of mass localization

- Based on weighted average of intersection.
- Weights are the product of the mean signal power of the lines \bullet generating the intersection point

$$\begin{bmatrix} X_{est} \\ Y_{est} \end{bmatrix} = \frac{1}{\sum_{i=1}^{m} b_i} \sum_{i=1}^{m} b_i \begin{bmatrix} x_i \\ y_i \end{bmatrix}$$

PCA for DOA estimates

Bearing error study

