
Matched Filter

Documentation for explaining UAVRT-SDR’s current matched filter

Flagstaff, AZ
June 24, 2017

Edited by

Michael Finley
Northern Arizona University

Dynamic and Active Systems Laboratory



CONTENTS Matched Filter: Project Manual

Contents

1 Project Description 3

2 Matched Filter Explanation 4

3 Methods/Procedures 11

4 MATLAB Processing 11

5 Recommendations 13

Page 2 of 13



Matched Filter: Project Manual

1 Project Description

The aim of this project is to construct an unmanned aerial system that integrates a radio telemetry re-
ceiver and data processing system for efficient detection and localization of tiny wildlife radio telemetry tags.
Current methods of locating and tracking small tagged animals are hampered by the inaccessibility of their
habitats. The high costs, risk to human safety, and small sample sizes resulting from current radio telemetry
methods limit our understanding of the movement and behaviors of many species. UAV-based technologies
promise to revolutionize a range of ecological field study paradigms due to the ability of a sensing platform
to fly in close proximity to rough terrain at very low cost. The new UAV-based (UAV-RT) system will
dramatically improve wildlife tracking capability while using inexpensive, commercially available radio tags.
The system design will reflect the unique needs of wildlife tracking applications, including easy assembly and
repair in the field and reduction of fire risk.

Our effort will focus on the development, analysis, real-time implementation, and test of software-defined
signal processing algorithms for RF signal detection and localization using unmanned aerial platforms. It
combines (1) aspects of both wireless communication and radar signal processing, as well as modern statis-
tical methods for model+data inference of RF source locations, and (2) fusion-based inference that draws
on RF data from both mobile UAV-based receivers and ground-based systems operated by expert humans.

The complete design, including parts, assembly plans, software, and training modules for the UAV-RT
system will be open sourced for widespread adoption of the technology, with dissemination and outreach by
a user community website and demonstrations at wildlife conferences.

1.1 Component Descriptions and Definitions

Airspy R2 Software Defined Radio (SDR) receiver, by Itead Studio (see: http://airspy.com/airspy-r2/)

Beacon Radio telemetry tag, provided by HOLOHIL (see: http://www.holohil.com/transmitters/tablebats)

LNA Low noise amplifier, provided by LNA4ALL

1.2 Document description

This document provides explanations for SNR calculations with the use of a software defined radio (SDR)
receiver. This document will use the Airspy R2 as an example SDR receiver, but any SDR receiver should
suffice assuming the correct drivers and dependencies can be acquired for usage with GNURadio. This
document will also assume the use of GNURadio as a means of getting the actual I/Q data but many other
SDR applications would work in its place (e.g. SDRSharp, etc.). This document will also be using MATLAB
to calculate the SNR but open source programs like Octave will work as well. This document assumes the
user has a raw binary I/Q data file readily available (see: I/Q Data Acquisition Guide) for processing.

1.2.1 Software

GNURadio GNURadio is a free and open source toolkit for software defined radio

GNURadio Companion GNU Radio Companion is a graphical user interface for GNURadio

MATLAB MATLAB, short for matrix laboratory, is a numerical computing environment

Octave Octave is a numerical copmuting environment very similar to MATLAB but open source

Page 3 of 13



Matched Filter: Project Manual

1.2.2 Hardware

Airspy R2 The Airspy R2 is an SDR receiver, specifications below

• 24-1800 MHz native RX range, down to DC with the SpyVerter option.

• 3.5 dB noise floor between 42 and 1002 MHz

• 10MSPS I/Q output, 16bit fixed or 32bit float ouput streams

• 2.5MSPS (experimental) I/Q output for low power devices

• 10MHz panoramic spectrum

• No I/Q imbalance, DC offset or 1/F noise

• SMA antenna connector

• Micro-B USB socket

• MCX connector for an external clock

2 Matched Filter Explanation

2.1 Introduction

The fundamental use of a matched filter in signal processing is the maximization of the signal-to-noise
ratio in the presence of additive stochastic noise, or more specifically white Gaussian noise. The matched
filter can be obtained by correlating a known signal, or template, with an unknown signal to detect the
presence of the template in the unknown signal; detecting the presence of a target signal in noise. This
correlation is equivalent to the convolving of an unknown signal with a conjugated time-reversed version of
the template. Furthermore, and computationally more efficient, the fast-Fourier-transform convolution of
a signal is equivalent to this convolution. The ladder approach can reduce processing time by up to one
hundred times that of the alternative approaches. For the sake of this explanation we will illustrate the more
computationally expensive, but more intelligible, methods.

2.2 Convolution

Convolution is a formal mathematical operation of two functions. In the context of signal processing, con-
volution is the process of creating a third signal from two separate signals. In the specific context of a
matched filter, the convolution of a signal and a template result in the output of the matched filter. In linear
systems convolution is used to describe the relationship between an input signal, the impulse response, and
the output signal.

In the context of our system specifically: the input signal to our matched filter is a signal with an un-
known presence of a target signal, the impulse response is the target signal or template, and the output
signal is the output of the matched filter. The naming convention we will use for convolution in the context
of our matched filter is detailed below.

The phrases impulse response, template, and target signal, are equivalent in the context of this matched
filter, the phrase template will be used moving forward for ease of reading.

Y [n] = H[n] ∗X[n] (1)

Where Y [n] represents the discrete-time signal output of our matched filter, H[n] represents the template of
our matched filter (the template), and X[n] represents the discrete-time signal input of our matched filter.
It is also worth bringing attention to the use of ∗ symbolizing convolution.

Page 4 of 13



2.3 Matched Filter Derivation Matched Filter: Project Manual

The length of the output signal will be equal to the length of the input signal plus the length of the
template minus 1.

NY = NX +NH − 1 (2)

Where Ny represents the number of samples in the matched filter output, NH represents the number of
samples in the template, and NX represents the number of samples of the input signal. The length of the
convolution is necessary for initializing an output array filled with zeros to be populated with the sums of
multiplications from the input signal and the template.

2.3 Matched Filter Derivation

Now that a convolution has been properly defined we can approach the application of convolution to develop
a matched filter. Given an input signal x′(t) consisting of both target and noise components, the output of
the matched filter is given by the convolution

y(t) =

∫ ∞
−∞

x′(s)h(t− s)ds =

∫ ∞
−∞

x′(s)x∗(s+ TM − t)ds (3)

The second portion of equation (3) represents the cross-correlation of the target-plus-noise signal x′(t) with
the transmitted waveform x(t), evaluated at lag TM − t. Thus, the matched filter implements a correlator
with the transmitted waveform as the reference signal.

It can be shown that the maximum achievable SNR depends only on the energy of the waveform and
not on other details such as its modulation. It is also worth pointing out that the duration of the signal
component of the matched filter output is exactly 2τ seconds, since it is the convolution of the τ -second
pulse with the τ -second matched filter impulse response (template). To illustrate the previous ideas in the
context of our system, consider a simple pulse of duration τ :

x(t) =

{
1 0 ≤ t ≤ τ

0 otherwise
(4)

The corresponding matched filter impulse response (template) is

x(t) =

{
A t ≤ TM − t

0 otherwise
(5)

Where TM > τ for causality. Because x(t) is a much simpler function than its fourier transform, a sinc
function, it is computationaly easier to work with the correlation interpretation of equation (3) to compute
the output. Figure 2 illustrates the two terms in the integrand, helping estbalish the regions of integration.
Part a of the figure shows that

y(t) =

{
0 t ≤ TM − t∫ t−TM+τ

0
(1)(A)ds TM − τ ≤ t ≤ TM

(6)

while part b is useful in identifying the next two regions

y(t) =

{ ∫ τ
t−TM

(1)(A)ds TM ≤ t ≤ TM + τ

0 t ≥ TM + t
(7)

Page 5 of 13



2.4 Matched Filter Convolution Matched Filter: Project Manual

Figure 1: Convolution of simple pulse and its matched filter: (a)TM − τ ≤ t ≤ TM , (b) TM ≤ t ≤ TM + τ

Lastly, the matched filter output for a simple pulse visually:

Figure 2: Matched filter output of a simple pulse

The final result is:

y(t) =


A[t− (TM − τ)] TM − τ ≤ t ≤ TM
A[(TM + τ)− t] TM ≤ t ≤ TM + τ

0 otherwise

(8)

The result illustrated in Figure 2 shows the matched filter output is a triangle function of duration 2τ secibds
wutg uts oeaj at t = TM as expected. The peak value is Aτ ; since the energy of the unit amplitude pulse
is just τ , the peak value equals AE as predicted. What follows is that the SNR is independent of anything
else but energy, as noted before.

2.4 Matched Filter Convolution

As an example of how convolution works we will illustrate a small-sample-size example. Again, X[n] repre-
sents an input signal with 9 sample points, H[n] represents the template of a signal to be looked for in the
signal, and Y [n] represents the output of the matched filter. The result is:

Page 6 of 13



2.4 Matched Filter Convolution Matched Filter: Project Manual

The above figure 6-5 shows the final results of a convolution, the figure 6-6 below illustrates each step in
the convolution process. The mathematics of this process will be explained in the next section, algorithmic
explanation. Figures courtesy of [1]. In the figure below squares represent non-zero contributions to the
matched filter output and diamonds represent zeroes, or place holders. The final result of the convolution
in figure 6-5 is the summation of all of the multiplications seen in figure 6-6 below.

Page 7 of 13



2.5 Algorithmic Explanation Matched Filter: Project Manual

One way to comprehend the matched filter is to visualize the template sliding along a signal and based on the
level of correlation the matched filter output increases. Remember though each time the template "slides"
along to a new index of the input signal, each index of the template is multiplied by that index of the signal,
so there is effectively two "slides" going on.

2.5 Algorithmic Explanation

An algorithm which will be used to create a functional MATLAB program for the matched filter is listed
below. This algorithm assumes the use of input signals and templates without any formal ’readings’ of the
necessary files. This algorithm just illustrates the functional pieces of the matched filter.

1 signal = signal %declaring signal

2 template = template %declaring template

3 length_template = length(template); %length of template

4 length_signal = length(signal); %length of signal

5 5 length_convolution = length_signal + length_template - 1; %length of convolution

6

7 for I = 0:lenth_signal %zeroing mf_output array

8 mf_output(I) = 0;

9 end

10 10

Page 8 of 13



2.6 Matched Filter Example OutputMatched Filter: Project Manual

11 for J = 0:length_signal %iteration loop for each index of input signal

12 for J = 0:length_template %iteration loop for each index of the template

13 mf_output(I + J) = mf_output(I + J) + (signal(I) * template(J));

14 end

15 15 end

This program effectively implements the matched filter. The iteration loop that occurs on lines 11 to line 15
can be difficult to understand. The inner loop is responsible for running through each index of the template
doing three things. First the template response is scaled by multiplying it by the value of the input sample
(see: signal(I) * template(J)), second the scaled impulse response is shifted the length of the template to
the right by adding this number to the index used for the output signal (see: mf_output(I + J)), third
mf_output must accumulate, sum, all the signals resulting from each sample in the input signal, therefor
the new information must be added to the information that is already in the array (see: mf_output(I + J)
= mf_output(I + J) + (signal(I) + template(J))).

2.6 Matched Filter Example Output

Applying the function detailed in section 4, MATLAB Processing, produces the outputs visualized below.

Figure 3: Showcasing visibly buried pulses being detected by the matched filter

Page 9 of 13



2.7 References Matched Filter: Project Manual

Figure 4: Showcasing visible pulses being detected by the matched filter

Figure 5: Showcasing visible pulses being detected by the matched filter

2.7 References

[1]S. W. Smith, "The Scientists and Engineers Guide to Digital Signal Processing," pp. 107-115, June 1997.

Page 10 of 13



Matched Filter: Project Manual

3 Methods/Procedures

3.1 Installing Necessary Software

3.1.1 MATLAB

To install MATLAB reference mathwork’s installation guides (see: https://www.mathworks.com/support/install-
matlab.html). Installing MATLAB requires a valid software license, which can be obtained by purchasing the
product from the MathWorks Store (see: https://www.mathworks.com/store/) or downloading a product
trial.

3.1.2 Octave

If MATLAB is not available to the user, Octave is a free open source numerical computing environment with
similar syntax to MATLAB. To install Octave on a Windows machine you will want to download the Win-
dows binaries with corresponding source code (see: https://www.gnu.org/software/octave/download.html)
and navigate to the following link (see: https://ftp.gnu.org/gnu/octave/windows/) and select the user’s
preferred installation method. The "octave-4.2.1-w64-installer.exe" is recommended (as of 3/5/2017, this is
Octave’s newest stable version).

All software installations are now complete for calculating SNR.

4 MATLAB Processing

After opening MATLAB navigate to the directory in which the I/Q data file was saved. In order for the
user to use or begin processing the I/Q data for pulse detection. The function used for this is included below.

The following MATLAB command would save matched_filter_output to your workspace as a float
variable containing the discrete-time signal with the matched filter output.

matched_filter_output = matched_filter_output(’file_sink_tutorial’, template);

The desired function is detailed below for reference:

function Y = matched_filter_output (filename, template);

signal = abs(read_complex_binary(filename)); %reading IQ file

signal = abs(signal);

5 function v = read_complex_binary (filename, count) %read IQ function

m = nargchk (1,2,nargin);

i f (m)

usage (m);

end

10

i f (nargin < 2)

count = Inf;

end

15 f = fopen (filename, ’rb’); %opening raw binary file

i f (f < 0) %checking for data

v = 0;

else
t = fread (f, [2, count], ’float’); %reading as a f loat

Page 11 of 13



Matched Filter: Project Manual

20 fclose (f); %closing file

v = t(1,:) + t(2,:)*i; %assuming IQIQIQ structure of binary file

[r, c] = size (v); %creating matrix to match IQ file size

v = reshape (v, c, r); %reshaping matrix to correct format

end

25

end

len_signal = length(signal); %length of signal

len_template = length(template); %length of template

30 len_total = len_signal + len_template - 1; %total length of convolution

for I=1:len_total %zero output array loop

Y(I)=0;

end

35

%the number 100 in the loops below can be changed to ease processing power

for I=1:100:len_signal %iterate for each point in input singal

for J=1:100:len_template %iterate for each point in template

Y(I + J) = Y(I + J) + (signal(I) * template(J)); %convolution

40 end

end

hold on

subplot(2,1,1)

45 plot(real(signal))

hold on

%plot(imag(signal))

title(’Original Signal’)

xlabel(’Discrete Samples’)

50 ylabel(’Amplitude’)

subplot(2,1,2)

plot(real(Y));

hold on

%plot(imag(Y(len:end)))

55 title(’Matched Filter Convolution’)

xlabel(’Discrete Samples’)

ylabel(’Output’)

hold off

60 Y = Y;

end

Essentially this function calls a nested function that opens the desired file, designates that is raw binary,
reads the raw binary file as a float, closes the file, then parses the data assuming it is structured like
I1Q1I2Q2I3Q3... until the end of the file is reached. Then the function reshapes it as desired. What is
left is an output in complex form with I being the real part and Q being the imaginary part in its complex
representation.

The function then brings to fruition equation (1) and plots the matched filter output in comparison to
that of the original signal showcasing the maximized SNR visually.

Page 12 of 13



Matched Filter: Project Manual

5 Recommendations

Comparisons of the various equivalent approaches detailed in the introduction to the matched filter would
hopefully allow for a more robust understanding of what is going on with a matched filter.

Page 13 of 13


